劉細鳳
安科瑞電氣股份有限公司 上海嘉定 201801
摘要:傳統(tǒng)霍爾電流傳感器測量范圍小、準確度等級低、頻率范圍窄、響應(yīng)速度慢已不能滿足實際工程的需求。為了滿足核聚變領(lǐng)域的需求,設(shè)計了種磁通霍爾電流傳感器?;诖磐ǖ脑砗吞匦裕瑸槠湓O(shè)計了種以脈寬調(diào)制(PWM)為核心的數(shù)字驅(qū)動電路,通過霍爾元件感應(yīng)磁場,形成霍爾電壓,經(jīng)過放大電路、積分調(diào)節(jié)電路、PWM產(chǎn)生電路、功率放大電路、反饋電路,終形成二次側(cè)的補償電流,從而保證霍爾元件處于磁通狀態(tài)。測試表明:設(shè)計的傳感器的電流測量范圍為±30kA,準確度等級為0.5級,頻率范圍可以達到20kHz,響應(yīng)時間在5μs以內(nèi)。
關(guān)鍵詞:霍爾傳感器;霍爾磁通電流傳感器;脈沖寬度調(diào)制;積分調(diào)節(jié);功率放大;反饋電路
0引言
作為世界上應(yīng)用廣泛、應(yīng)用數(shù)量多傳感器之的霍爾電流傳感器,具有靈敏度高、精度高、溫度漂移小、工作壽命長、可靠性、性高等點[1]?;诨魻栯娏鱾鞲衅鞯囊陨宵c,考慮到般大電流傳感器不能交直流兩用,準確度等級、頻率范圍、響應(yīng)速度,也很難同時滿足核聚變領(lǐng)域的需要。本文以閉環(huán)磁通霍爾電流傳感器為基礎(chǔ),設(shè)計出種用于核聚變領(lǐng)域的大電流霍爾傳感器電路,此傳感器可測交直流電流。測量范圍高至±30kA,輸出信號準確度等級高、頻率范圍寬、響應(yīng)速度快,同時解決了在大電流情況下晶體管的大功耗散熱和電壓等級提高影響的問題,很好地滿足了核聚變領(lǐng)域的需要。
1磁通霍爾電流傳感器工作原理
1.1霍爾效應(yīng)現(xiàn)象
具體產(chǎn)生的過程為:將通電的半導(dǎo)體材料(般制成半導(dǎo)體薄片)放入磁場中,磁場的方向與電流方向夾角成90°(這時霍爾效應(yīng)好)放置,這時由于導(dǎo)體中載流子受到洛倫茲力作用會發(fā)生偏移,在半導(dǎo)體薄片的兩邊會產(chǎn)生個電壓差,在電場及磁場力的作用下載流子的運動達到個平衡狀態(tài),這過程即為霍爾效應(yīng)產(chǎn)生的過程,產(chǎn)生的電壓稱之為霍爾電勢,霍爾電勢Vh為:
(1) 式中I為通過霍爾元件的電流;B為垂直霍爾元件的磁感應(yīng)強度;Kh為霍爾材料靈敏度系數(shù)。Kh=Rh/d×f(L/b),Rh為霍爾系數(shù);L,b,d為霍爾元件的長、寬、高;f(L/b)為修正系數(shù)。
1.2工作原理
如圖1所示為磁通霍爾電流傳感器的工作原理。次側(cè)的原邊電流I1在磁芯中產(chǎn)生的磁場B1與二次側(cè)4邊線圈中I2產(chǎn)生的磁場B2相平衡,從而使4個霍爾元件H始終保持磁通的工作狀態(tài)。補償電流I2的產(chǎn)生方式:霍爾元件在感應(yīng)到磁場的不平衡后,產(chǎn)生霍爾電壓Vh,經(jīng)過比例放大和積分調(diào)節(jié)后,轉(zhuǎn)換為脈寬調(diào)(pulsewidthmodulation,PWM)信號用于驅(qū)動功率放大電路,再由功率放大電路提供相應(yīng)占空比大小的電壓,終形成二次側(cè)的電流I2。在整個傳感器系統(tǒng)穩(wěn)定時,次側(cè)和二次側(cè)的磁場始終保持平衡,即有N1·I1=N2·I2。
圖1傳感器工作原理
考慮到使用的磁芯為正方形框體形狀,磁芯上不同位置處的磁場強度有所不同。為提高系統(tǒng)整體精度,本傳感器系統(tǒng)設(shè)計在磁芯的互為對稱的框體四邊的中點位置設(shè)置霍爾元件,共計4個霍爾元件,分別用來感受4點的磁場強度。以這4個霍爾電壓大小的和來衡量磁場的不平衡量,作為系統(tǒng)的反饋量。
2系統(tǒng)硬件電路設(shè)計
整個電流閉環(huán)傳感器系統(tǒng)分為6個部分:1)霍爾器件供電電路,由恒壓源給霍爾元件提供工作電流;2)感應(yīng)電路,次側(cè)電流發(fā)生變化時,磁場平衡被打破,元件感應(yīng)到磁場不平衡從而產(chǎn)生霍爾電壓Vh;3)放大電路和積分調(diào)節(jié)電路,對霍爾元件產(chǎn)生的微弱霍爾電壓信號進行放大調(diào)節(jié);4)PWM波產(chǎn)生電路,放大后的霍爾信號與載波通過比較器比較,后產(chǎn)生三電平的PWM信號;5)功率放大電路,PWM波驅(qū)動金屬氧化物半導(dǎo)體場效開通,形成定占空比的電壓信號,加在補償線圈兩端從而形成反饋電流;6)反饋電路,依據(jù)磁平衡原理,利用二次側(cè)補償線圈產(chǎn)生的磁場對次側(cè)磁場進行補償,使氣隙處始終處于磁通狀態(tài),其工作流程如圖2所示。
圖2傳感器工作流程
2.1霍爾元件
霍爾元件是組成閉環(huán)霍爾電流傳感器的重要組成部分,本設(shè)計選用銻化銦為元件材料的器件HW-302B,其采用單列直插式封裝形式。輸入采用電壓或電流兩種模式供電,大輸入電流為20mA,輸入、輸出阻抗為240~550Ω,失調(diào)電壓為-7~7mV,溫度系數(shù)為-1.8%/℃,輸出霍爾電壓范圍為122~204mV。由于采用電流源模式供電,引腳1,3為控制輸入端,引腳2,4為霍爾電壓輸出端,霍爾元件置于磁芯氣隙處,能大程度地感應(yīng)垂直穿過霍爾元件的磁場,得到穩(wěn)定的霍爾電壓。
2.2放大電路和積分調(diào)節(jié)電路
次側(cè)電流發(fā)生變化時,磁場平衡被打破,元件感應(yīng)到磁場不平衡從而產(chǎn)生微弱霍爾電壓Vh,由于電壓很小,需要對此信號進行放大和調(diào)節(jié),采用OPA2277高精度運算放大器。通過改變電阻值來改變放大倍數(shù),OPA2277的1,2引腳之間跨接電阻器組成比例放大電路,6,7引腳之間跨接電阻器和電容器組成積分調(diào)節(jié)電路。本設(shè)計電路通過調(diào)節(jié)與電容器相連的可調(diào)電阻器來調(diào)整放大倍數(shù),電路如圖3所示。
圖3放大電路和積分調(diào)節(jié)電路
2.3PWM波產(chǎn)生電路
設(shè)計的PWM波產(chǎn)生方式是用霍爾輸出放大信號與載波進行比較,產(chǎn)生定占空比的三電平信號。如圖4所示,為載波調(diào)節(jié)電路,通過調(diào)節(jié)LF347的1,2引腳之間的可調(diào)電阻器RP3調(diào)節(jié)載波幅值,調(diào)節(jié)與6引腳相連的RP2改變載波的偏移量,引腳7輸出負載波(TRI-),引腳8輸出正載波(TRI+)。
圖4載波調(diào)節(jié)電路
如圖5所示,VERR與TRI+通過比較器LM393比較,比較后的信號經(jīng)過處理產(chǎn)生PWM1和PWM3;VERR與TRI—通過比較器LM393比較,比較后的信號經(jīng)過處理產(chǎn)生PWM2和PWM4。
圖5PWM波產(chǎn)生電路
2.4功率放大電路
如圖6所示為功率放大電路原理。該電路的供電電壓為正負直流電壓,其中VDC+,VDC-值相等,0V為0電位,功率放大電路采用正負向?qū)ΨQ的設(shè)計。為了在引出位置(即二次側(cè)線圈串聯(lián)采樣電阻)輸出正向或反向的電壓;4路PWM波驅(qū)動T1~T4,通過控制4個MOSFET的通斷來控制引出位置的電壓。具體工作原理以正向為例來說明:在需要產(chǎn)生正向電壓時,PWM2為高電平,MOSFET管T2直開通,對應(yīng)的PWM4為低電平,MOSFET管T4直關(guān)斷。PMW1為設(shè)置好占空比的PWM波,用于控制MOSFET管T1,PMW3與PMW1為邏輯運算與非關(guān)系,此時的MOS-FET管T3的狀態(tài)對電路無影響。T1開通時,電流方向:VDC+→T1→T2→引出位置→0;T1關(guān)斷時,電流方向:引出位置→D1→T2→引出位置,形成續(xù)流回路;引出位置接二次側(cè)線圈,線圈電感很大,通過控制PMW1的占空比來實現(xiàn)控制二次側(cè)線圈上的補償電流。
圖6功率放大電路原理
2.5反饋電路
閉環(huán)磁通霍爾電流傳感器采用磁平衡原理,被測電流產(chǎn)生的磁場需要通過二次側(cè)線圈電流進行補償,使霍爾元件在氣隙處始終處于磁通工作狀態(tài)。當I1剛建立磁場,I2尚未形成時,霍爾元件檢測出N1I1所產(chǎn)生的磁場信號,經(jīng)放大電路和積分調(diào)節(jié),轉(zhuǎn)換為PWM波信號用于驅(qū)動功率放大電路,終形成對應(yīng)占空比大小的電壓[4]。由于補償回路是個線圈,通過線圈電流不會突變,因此I2逐漸上升,N2I2所產(chǎn)生的磁場補償了N1I1所產(chǎn)生的磁場,因此霍爾元件輸出減小,I2上升減慢。當N2I2=N1I1時,磁場達到平衡,霍爾元件輸出為,但由于線圈的影響,I2會繼續(xù)上升,平衡打破(N2I2>N1I1),形成過補償,霍爾元件輸出信號會變號,輸出功率放大電路使I2減小,在這種往復(fù)的過程中,氣隙處的霍爾元件會處于平衡點附近振蕩。
2.6霍爾元件補償
由于半導(dǎo)體特性和制造工藝等原因,霍爾電流傳感器在對電流測量時總是存在定的誤差。為進步提高霍爾元件的測量精度和靈敏度,往往需要對霍爾元件進行誤差補償,其主要包括溫度補償和不等位電勢補償。
2.6.1溫度補償
由于霍爾元件是有半導(dǎo)體元件制成,半導(dǎo)體材料的電阻率、遷移率、載流子的濃度都會隨溫度的變化而變化,造成測量誤差,因此需要溫度補償。針對溫度變化導(dǎo)致的內(nèi)阻變化,可以采用對輸入或輸出電路的電阻值進行補償。
2.6.1.1輸入回路補償法
如圖7所示,采用恒流源供電,并聯(lián)分流電阻器R,設(shè)初始溫度為T0,霍爾元件的輸入電阻值為R0,霍爾電流為I0,霍爾元件靈敏度為K0,當溫度上升到T時,霍爾元件的輸入電阻值為R1,霍爾電流為I1,霍爾元件靈敏度為K1。則溫度在T0和T時有下式:
(2) (3) 式中下標0,1分別為溫度為T0和T的有關(guān)值,α為霍爾元件靈敏度溫度系數(shù),β為霍爾元件輸入電阻溫度系數(shù)。當溫度影響帶來的測量誤差*補償時,不同溫度下輸出的霍爾電壓相等。
圖7輸入回路補償電路
2.6.1.2輸出回路補償法
輸出回路進行溫度補償?shù)碾娐罚敎囟茸兓瘯r,用熱敏電阻值Rt的變化來抵消霍爾電勢Vh和輸出電阻值R0變化對輸出電壓的影響,從而保持輸出霍爾電勢與溫度基本無關(guān)。
2.6.2不等位電勢補償
不等位電勢是霍爾元件在加額定控制電流而外磁場為時出現(xiàn)的霍爾電勢,稱其為位電勢(及漂)。在分析不等位電勢時,可將霍爾元件等效為個電橋。輸入電1,3和輸出電2,4可看作電橋的電阻連接點,其相互之間分布電阻值R1,R2,R3,R4構(gòu)成4個橋臂,當B=0時,理想情況下Vh=0,即4個電阻值相等。如果通入額定電流,而Vh不等于0,說明4個電阻存在差異,需要添加平衡電橋電路[9]。如圖8所示,通過對滑動電阻器的調(diào)節(jié)可以達到霍爾元件的電橋平衡,從而在B=0時,使輸出電壓Vh=0。
圖8不等位補償電路
3測量結(jié)果及處理
3.1測量方法
1)選用的測試電源為高精度逆變電源,此電源可以輸出電流為正負直流、交流,輸出通過導(dǎo)線和負載相連,負載為個大環(huán)形線圈,被測傳感器套在大環(huán)形線圈臂上(即電源輸出個小電流用等效安匝法使電流加倍);另外高精度逆變電源輸出導(dǎo)線上套有標準電流傳感器。
2)設(shè)計傳感器電路可以采集交直流信號;板卡控制電選用直流12V,功率放大電路供電電壓為直流±80V。
3)將設(shè)計傳感器的信號輸出端與電阻器相連,電阻器另端接到±80V電源的0V電位上。分別采集電阻兩端電壓信號和標準電流傳感器輸出電壓信號。
3.2測量過程
實驗在次側(cè)高精度逆變電源輸出電流為正負直流條件下測試。接通電源使傳感器系統(tǒng)穩(wěn)定0.5h,調(diào)節(jié)高精度逆變電源,使電流輸出從0A開始正向增加,每間隔5kA停頓下,等在該點穩(wěn)定后讀數(shù)次,依次順序電流達到30kA,后退到0A;電流從0A開始負向增加,每間隔-5kA停頓次,等在該點穩(wěn)定后讀數(shù)次,依次順序電流達到-30kA,后退到0A。特別需要注意讀數(shù)時在每個電流點上保持電流穩(wěn)定后讀取。
3.3測量范圍和準確度等級(精度)
在室溫下對設(shè)計傳感器進行測試,實驗數(shù)據(jù)如圖9。實驗中用大環(huán)形線圈等效安匝法模擬了次側(cè)的大電流,次側(cè)大環(huán)形線圈繞組匝數(shù)為532,標準電流傳感器匝比為100,設(shè)計傳感器匝數(shù)為6000。i1為次側(cè)單匝導(dǎo)線上標準電流傳感器測量值;i2為設(shè)計傳感器采樣電流;I1為次側(cè)的換算電流,I1=532100i1;I2為二次側(cè)的換算電流,I2=6000i2;δ為相對誤差, 其中,X為設(shè)計傳感器的示值,XS為標準傳感器示值。表中第7組數(shù)據(jù)為電流時各傳感器的輸出值(即漂值)。
圖9電流測試數(shù)據(jù)
從圖中可以看出:大電流達到了±30kA;大相對誤差為0.44%,出現(xiàn)在實驗中電流小的點,且明顯有電流較小時相對誤差更大的情況。造成這種情況的原因是,點漂移得不夠,數(shù)據(jù)較小時,采集測量的點漂移影響了傳感器的準確度等級,但整體準確度等級達到了0.5級(精度為0.5%)。傳統(tǒng)傳感器測量范圍在±10kA以下,即使范圍能到達±30kA的準確度等級為1.0級。
3.4頻率范圍
設(shè)計電流傳感器和標準電流傳感器輸出接示波器,調(diào)節(jié)高精度逆變電源使電源每次輸出交流電流為值40A(大環(huán)形線圈上產(chǎn)生等效值約為21.3kA的電流),每次測試改變頻率。經(jīng)過測試,觀察待測電流傳感器的輸出信號波形,當高精度逆變電源輸出電流頻率為20kHz時,設(shè)計電流傳感器采到的輸出頻率為20.08kHz,值為3.52V(探頭衰減10倍,顯示為0.352V)。經(jīng)過計算,輸入輸出電流基本保持相等,說明此頻率下輸出信號的幅頻特性較好。當高精度逆變電源輸出電流頻率繼續(xù)增加,設(shè)計電流傳感器采到的輸出電壓值明顯減小,說明傳感器跟蹤失敗,輸出信號幅頻特性變差;但比傳統(tǒng)同類型±30kA大電流傳感器(頻率范圍1kHz)有很大的提高。
3.5響應(yīng)時間
指次側(cè)電流為高頻交流或充電機暫態(tài)放電電流時,設(shè)計電流傳感器采到電流的時刻與標準電流傳感器采到電流時刻的時間差,定義為響應(yīng)時間。由于本傳感器設(shè)計的頻率范圍為20kHz,所以把高精度逆變電源輸出波形頻率設(shè)為20kHz條件下,經(jīng)過多次測試得出組時間差值,計算平均值得到反應(yīng)時間小于5μs。
4安科瑞霍爾傳感器產(chǎn)品選型
4.1產(chǎn)品介紹
霍爾電流傳感器主要適用于交流、直流、脈沖等復(fù)雜信號的隔離轉(zhuǎn)換,通過霍爾效應(yīng)原理使變換后的信號能夠直接被AD、DSP、PLC、二次儀表等各種采集裝置直接采集和接受,響應(yīng)時間快,電流測量范圍寬精度高,過載能力強,線性好,抗干擾能力強。適用于電流監(jiān)控及電池應(yīng)用、逆變電源及太陽能電源管理系統(tǒng)、直流屏及直流馬達驅(qū)動、電鍍、焊接應(yīng)用、變頻器,UPS伺服控制等系統(tǒng)電流信號采集和反饋控制。
4.2產(chǎn)品選型
4.2.1開口式開環(huán)霍爾電流傳感器
表1
4.2.2閉口式開環(huán)霍爾電流傳感器
表2
4.2.3閉環(huán)霍爾電流傳感器
表3
4.2.4直流漏電流傳感器
表4
5結(jié)束語
本文設(shè)計了種測量范圍大、準確度等級高、頻率范圍寬、響應(yīng)快的傳感器。經(jīng)過測試,此電流傳感器測量范圍達到±30kA,準確度等級到達0.5級,頻率范圍到達20kHz,反響時間小于5μs,并解決了在大電流情況下,晶體管的大功耗散熱和電壓等級提高影響的問題,此傳感器可以廣泛應(yīng)用于核聚變領(lǐng)域。
【參考文獻】
[1]武旭,王林森,居鵬.閉環(huán)霍爾電流傳感器的硬件電路設(shè)計
[2]程興,但強,孫珍軍.種新型閉環(huán)式雙鐵芯霍爾電流傳感器的建模與實現(xiàn)[J].傳感器與微系統(tǒng),2013,31(7):12-18.
[3]安科瑞企業(yè)微電網(wǎng)設(shè)計與應(yīng)用手冊2020.06版
作者簡介:劉細鳳,女,現(xiàn)任職于安科瑞電氣股份有限公司